ANNA UNIVERSITY, CHENNAI

UNIVERSITY DEPARTMENTS

R -2015

LIST OF OPEN ELECTIVES TO BE OFFERED IN THE EVEN SEMESTER (MIT CAMPUS)

FACULTY OF MECHANICAL ENGINEERING								
DEPARTMENT OF PRODUCTION TECHNOLOGY								
SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
B.E. Production Engineering								
1.	PR7891	Surface Engineering	OE	3	3	0	0	3
2.	PR7892	Corrosion Engineering	OE	3	3	0	0	3
FACULTY OF INFORMATION AND COMMUNICATION ENGINEERING								
DEPARTMENT OF ELECTRONICS ENGINEERING								
B.E. Electronics and Communication Engineering								
3.	EC7891	Microcontroller Programming for Industrial Applications	OE	3	3	0	0	3

SURFACE ENGINEERING

OBJECTIVES

- To enable the Engineering students about the value of surface engineering
- To make the engineering students to understand the importance of surface & its interactions with its environment
- To equip the students to understand the various & Advanced surface modification techniques
- To develop the skill among the students to evaluate and inspect the surface modified materials for various industrial usages.

UNIT- I BASICS OF SURFACE PROPERTIES

Introduction – Tribology – surface degradation – wear – types of wear – adhesive – abrasive – oxidative –corrosive – erosive and fretting wear – roles of friction and lubrication – corrosion – types – passivity – mechanism of growth and break down of passive film – corrosion control.

UNIT – II SURFACE CLEANING

Introduction – surface pretreatment of metallic and electronic materials – mechanical cleaningpolishing – chemical cleaning – acid, alkaline, acetone and carbon tetra chloride cleaning – alumina and diamond polishing – degreasing – ultrasonic cleaning

UNIT – III SURFACE COATING TECHNIQUES

Introduction – principle – parameters of electrodeposition –Faraday's laws of electrodepositionelectrodeposition of copper, nickel, chromium and gold for industrial practices – organic coatingspaints-requirements of good paints-constituents of paints-function-formulation of durable paintenamel coatings-special paints-heat resistant and fire retardant paints-electroless coatingsconversion coatings.

UNIT – IV ADVANCED SURFACE MODIFICATION PROCESS

Introduction –physical vapor deposition-chemical vapor deposition- ion beam process – ion beam assisted vapour deposition – ion implantation – reactive ion sputtering coating – electron beam process – electron beam assisted vapour deposition – laser assisted surface modification – laser alloying – laser melting – laser ablation – laser sprayed deposit – direct metal deposition by laser

UNIT - V STANDARDS FOR SURFACE ENGINEERING MEASUREMENTS

Introduction – Terminology – laboratory accredation – sampling – surface finish evaluation – bare and coated materials – product quality standards for specific coating process – conversion coatings – galvanized coatings – electrodeposited coatings – vapor deposited coatings – standards & ASTM Standards for measurement of surface treated materials – depth – thickness – hardness and friction co-efficient.

TEXT BOOKS

TOTAL: 45 PERIODS

- 1. Ramnarayan chattopadhyay, advanced thermally assisted surface engineering processes, kluwer academic publishers, 2004
- 2. Sudarshan T S, Surface modification technologies an engineer's guide; Marcel Dekkar, Newyork, 1989.

REFERENCES

- 1. Varghese C D, Electroplating and other surface treatments a practical guide, TMH, 1993.
- 2. Adamson A W and Gast A P, Physical chemistry of surfaces, 6th Ed., John Willey & Sons 1997.
- 3. Stanley J.Dapkunas, Surface Engineering Measurement Standards for inorganic materials, National institute of standards & technology (special publication, 960-9)

PR7892

OBJECTIVES

- To enlighten the engineering students about the scope and cost of corrosion
- To make the engineering students to understand the various types of corrosion under normal to severe corrosive environments in manufacturing industrial sectors.
- To develop the skills among the students about corrosion testing of materials and devices of Aerospace, Automobile, refinaries and electronic equipments.
- To familiarize the students in selection of materials, corrosion monitoring and prevention, developing the specialized skills in manufacturing the durable materials for various industries for long term application.

UNIT I INTRODUCTION AND CORROSION PRINCIPLES

Introduction-Definition-Corrosion engineering-Scope in industries-Cost of corrosion-corrosion damage-Classification of corrosion (wet & dry)-electrochemical corrosion-electrochemical reactions-effects of oxidizers-velocity-temperature-concentration-Galvanic coupling (Dissimilar materials coupling) - metallurgical aspects-metallic properties-economic considerations-importance of corrosion inspection-new instruments.

UNIT – II FORMS OF CORROSION ON ENGINEERING DEVICES

Introduction-two metal Corrosion-emf-Galvanic series-Distance area principle, characteristics, mechanism, velocity of pitting corrosion (autocatalytic, shape and growth)-Intergrannular corrosion (weld decay, knife line attack)-Selective leaching (dezincification and graphitation)-erosion corrosion-surface film-turbulence-impingement-stress corrosion-cracking-crack-morphology-stress effect-time to cracking-Hydrogen embrittlement-fracture mechanism-prevention.

UNIT-III CORROSION TESTING OF ENGINEERING MATERIALS AND DEVICES

Introduction-classification-purpose-sample preparation-Exposure testing-Duration-planned interval tests for erosion corrosion-crevice-pitting-intergrannular-pitting and stress corrosion cracking-NACE test methods-Slow strain rate-linear polarization-cyclic voltametry-electronic instrumentation-AC impedance-in sea water testing-in vivo-testing-Huey and Streicher tests for stainless steel and sensitized steels-corrosion of plastics and elastomers-summerizing data-interpretations of data.

UNIT-IV EFFECTS OF CORROSIVE ENVIRONMENTS AND AGEING STUDIES OF ENGINEERING MATERIALS AND DEVICES

Introduction-atmosphere-seawater-fresh water-soils-corrosion of aerospace-automobile-electronic equipments-nuclear-thermal solar power plants-Ageing studies of Class1-class2-class 3 materials in ambient, medium and severe corrosive environments & manufacturing industries- case studies.

UNIT-V MODERN APPROACHES FOR CORROSION PREVENTION

Introduction- selection of materials-alternate environments- proper design rules-metallic coatingsanodic and cathodic-applications-galvanizing of steel sheet-metal cladding-electroplatingobjectives-theory-procedures on metals and non metals-electroplating of nickel and chromium for automobile and other industries –cleaning methods of samples before and after electro platingmetals spray coatings- corrosion control standards.

TEXT BOOKS

- 1. Mars G.Fontana Corrosion Engineering (Third edition) McGraw Hill Education (India) private Limited. Chennai , India
- 2. P.C.Jain & Monika Jain Engineering Chemistry, Dhanpat Rai & Sons, Delhi, India.

REFERENCES.

- 1. Pierre R. Roberge Handbook of corrosion Engineering, McGraw Hill Professional (1999)
- 2. Volkan Cicek, Corrosion Engineering, John Wiley & Sons (2014)
- 3. Volkan Cicek, Bayan Al-Numan, Corrosion Chemistry, John Wiley & sons (2011)

9

9

9

9

TOTAL: 45 PERIODS

9

MICROCONTROLLER PROGRAMMING FOR INDUSTRIAL APPLICATIONS

OBJECTIVES

EC7891

- To study different microcontroller architectures and interfaces •
- To program the microcontroller for real time applications
- To architect a microcontroller system for different hardware and software. •

UNIT I **INTRODUCTION TO 8051 MICRO CONTROLLER**

Overview of 8051 Micro Controller, Architecture, I/O ports and Memory Organization, Interrupts, Timer/Counter and Serial Communication.

PIC MICROCONTROLLER UNIT II

PIC microcontroller Architecture - Memory - Parallel ports - Interrupts - Timers/Counters - UART-A/D converter - PWM.

PROGRAMMING WITH C UNIT III

Introduction to C - Microchip MPLAB IDE - CCS PCM C compiler - Proteus VSM - Microchip PICDEM Mechatronics board.

UNIT IV HUMAN AND PHYSICAL INTERFACES

Human interface from switches to keypads - LED displays - LCD - interfacing to the physical worldsimple sensors: micro switch, Light-dependent resistors, Optical object sensing, opto-sensor applied as a shaft encoder, Ultrasonic object sensor - Actuators: DC and stepper motors -Interfacing to actuators.

APPLICATIONS OF 8051 AND PIC MICROCONTROLLERS UNIT V

LED Chasing circuit - Four digit LED Display interface, Interrupt driven event counter with 4-digit LED display - Simple Buzzer interface, Speaker interface - Electronic Siren - Interfacing Digital temperature sensor - Analog temperature sensor IC with A/D converter.

OUTCOMES:

At the end of the course, the student will be able to:

- Select a microcontroller suitable for industrial applications. •
- Design hardware of microcontroller system. •
- Find effective solutions to a wide range of real-world microcontroller applications. •

TEXT BOOKS:

- 1. Muhammad Ali Mazidi and Janice GilliMazidi, The 8051 Micro Controller and Embedded Systems', Pearson Education, 5th Indian reprint, 2003.
- 2. Dogan Ibrahim, Microcontroller Projects in C for the 8051, Newnes, 2000.
- 3. Martin P.Bates, Programming 8-bit PIC Microcontrollers in C with interactive hardware simulation, Newnes Press, 2008.

REFERENCES:

- 1. Tim Wilmshurst, Designing Embedded Systems with PIC Microcontrollers Principles and applications, Newnes, Elsevier, 2007.
- 2. Milan Verle, PIC Microcontrollers Programming In C, Mikro Elektronika, 2009.

a

9

LTPC

3 0 0 3

9

TOTAL: 45 PERIODS

9

9